Bibliography
-
Manoharan, V. N. Colloidal matter: Packing, geometry, and entropy. Science 349, (2015).
-
Molecule. Merriam-Webster Dictionary (2022).
-
Rees, D. C., Williams, T. N. & Gladwin, M. T. Sickle-cell disease. The Lancet 376, 2018–2031 (2010).
-
Garmann, R. F., Comas-Garcia, M., Knobler, C. M. & Gelbart, W. M. Physical principles in the self-assembly of a simple spherical virus. Acc. Chem. Res. 49, 48–55 (2016).
-
Hofmann, M., Anderssohn, R., Bahr, H.-A., Weiß, H.-J. & Nellesen, J. Why Hexagonal BasaltColumns? Phys. Rev. Lett. 115, 154301 (2015).
-
Aumeier, C. et al. Self-repair promotes microtubule rescue. Nat Cell Biol18, 1054–1064 (2016).
-
Robertson, A. W. et al. Dynamics of Single Fe Atoms in Graphene Vacancies. NanoLett. 13, 1468–1475 (2013).
-
Zia, R. N., Landrum, B. J. & Russel, W. B. A micro-mechanicalstudy of coarsening and rheology of colloidal gels: Cage building,cage hopping, and Smoluchowski’sratchet. Journal of Rheology 58, 1121–1157 (2014).
-
Lyklema, J. Fundamentals of interface and colloid science. 4: Particulatecolloids. vol. 4 (Elsevier, 2005).
-
Poon, W. C. K. Colloids as big atoms: The genesis of a paradigm.J. Phys. A: Math. Theor. 49, 401001 (2016).
-
Perrin, J. Mouvement brownien et réalité moléculaire. Ann. Chimi. Phys. 18, 5–114 (1909).
-
Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).
-
Kuijk, A., van Blaaderen, A. & Imhof, A. Synthesis of Monodisperse, Rodlike Silica Colloids with Tunable Aspect Ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011).
-
Lee, S. H. & Liddell, C. M. Anisotropic Magnetic Colloids: A Strategy to Form Complex Structures Using Nonspherical Building Blocks. Small 5, 1957–1962 (2009).
-
Lee, J. H., Singer, J. P. & Thomas, E. L. Micro- / nanostructured mechanical metamaterials. Advanced Materials 24, 4782 (2012).
-
Zadpoor, A. A. Mechanical meta-materials. Mater. Horiz. 3, 371–381 (2016).
-
Kim, S.-H., Lee, S. Y., Yang, S.-M. & Yi, G.-R. Self-assembled colloidal structures for photonics. NPG Asia Materials 3, 25–33 (2011).
-
Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature materials 6, 557–562 (2007).
-
Non-spherical particles. in Colloidal Suspension Rheology (eds. Mewis, J. & Wagner, N. J.) 155–179 (Cambridge University Press, 2011). doi:10.1017/CBO9780511977978.008.
-
Meijer, J.-M. et al. Convectively Assembled Monolayers of Colloidal Cubes: Evidence of Optimal Packings. Langmuir 35, 4946–4955 (2019).
-
Mukhija, D. & J. Solomon, M. Nematic order in suspensions of colloidal rods by application of a centrifugal field. Soft Matter 7, 540–545 (2011).
-
Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).
-
Morphew, D., Shaw, J., Avins, C. & Chakrabarti, D. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules. ACS Nano 12, 2355–2364 (2018).
-
He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).
-
Noya, E. G., Zubieta, I., Pine, D. J. & Sciortino, F. Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys. 151, 094502 (2019).
-
G. Noya, E., G. Almarza, N. & Lomba, E. Assembly of trivalent particles under confinement: From an exotic solid phase to a liquid phase at low temperature. Soft Matter 13, 3221–3229 (2017).
-
Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable assembly of hybrid colloids induced by regioselective depletion. Nature Materials 1–8 (2020) doi:10.1038/s41563-020-0744-2.
-
Chen, Q. et al. Supracolloidal Reaction Kinetics of Janus Spheres. Science 331, 199–202 (2011).
-
Russo, J., Tartaglia, P. & Sciortino, F. Reversible gels of patchy particles: Role of the valence. J. Chem. Phys. 131, 014504 (2009).
-
Kose, A., Ozaki, M., Takano, K., Kobayashi, Y. & Hachisu, S. Direct observation of ordered latex suspension by metallurgical microscope. Journal of Colloid and Interface Science 44, 330–338 (1973).
-
Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).
-
Buscall, R., Mills, P. D. A. & Yates, G. E. Viscoelastic properties of strongly FlocculatedPolystyrene LatexDispersions. Colloids and Surfaces 18, 341–358 (1986).
-
Pugh, R. J. & Bergström, L. [Surface and Colloid Chemistry in Advanced Ceramics Processing.(https://doi.org/10.1201/9780203737842) vol. 51 (CRC Press, 1994).
-
Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal Superlattices. Annual Review of Physical Chemistry 49, 371–404 (1998).
-
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annual Review of Materials Science 30, 545–610 (2000).
-
Talapin, D. V. et al. A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Advanced Materials 13, 1868–1871 (2001).
-
Murray, C. A. & Grier, D. G. Video Microscopy of Monodisperse Colloidal Systems. Annual Review of Physical Chemistry 47, 421 (1996).
-
Nelson, D. R. Toward a Tetravalent Chemistry of Colloids. Nano Lett. 2, 1125–1129 (2002).
-
Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005).
-
Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E. & Sciortino, F. Phase Diagram of Patchy Colloids: Towards Empty Liquids. Phys. Rev. Lett. 97, 168301 (2006).
-
Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).
-
Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nature Mater 3, 593–600 (2004).
-
Tracey, D. F., Noya, E. G. & Doye, J. P. K. Programming patchy particles to form complex periodic structures. J. Chem. Phys. 151, 224506 (2019).
-
Rao, A. B. et al. Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals. ACS Nano 14, 5348–5359 (2020).
-
Liu, D., Gao, Y., Tong, A. & Hu, S. Absolute photonic band gap in 2D honeycomb annular photonic crystals. Physics Letters A 379, 214–217 (2015).
-
Yves, S., Lemoult, F., Fink, M. & Lerosey, G. Crystalline Soda Can Metamaterial exhibiting Graphene-like Dispersion at subwavelength scale. Sci Rep 7, 15359 (2017).
-
Chen, D., Zhang, G. & Torquato, S. Inverse Design of Colloidal Crystals via Optimized Patchy Interactions. J. Phys. Chem. B 122, 8462–8468 (2018).
-
Zaccarelli, E. Colloidal gels: Equilibrium and non-equilibrium routes. J. Phys.: Condens. Matter 19, 323101 (2007).
-
Sciortino, F. & Zaccarelli, E. Equilibrium gels of limited valence colloids. Current Opinion in Colloid & Interface Science 30, 90–96 (2017).
-
Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).
-
Stuij, S. et al. Revealing Polymerization Kinetics with Colloidal Dipatch Particles. Phys. Rev. Lett. 127, 108001 (2021).
-
McMullen, A., Holmes-Cerfon, M., Sciortino, F., Grosberg, A. Y. & Brujic, J. Freely Jointed Polymers Made of Droplets. Phys. Rev. Lett. 121, 138002 (2018).
-
Zheng, X., Wang, Y., Wang, Y., Pine, D. J. & Weck, M. Thermal Regulation of Colloidal Materials Architecture through Orthogonal Functionalizable Patchy Particles. Chem. Mater. 28, 3984 (2016).
-
Perry, R. W., Holmes-Cerfon, M. C., Brenner, M. P. & Manoharan, V. N. Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements. Phys. Rev. Lett. 114, 228301 (2015).
-
Wang, J. et al. Magic number colloidal clusters as minimum free energy structures. Nature Communications 9, 5259 (2018).
-
Urzhumov, Y. A. et al. Plasmonic nanoclusters: A path towards negative-index metafluids. Opt Express 15, 14129–14145 (2007).
-
Fan, J. A. et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science 328, 1135–1138 (2010).
-
Wang, Y. et al. Three-Dimensional Lock and Key Colloids. Journal of the American Chemical Society 136, 6866–6869 (2014).
-
Ni, S., Leemann, J., Buttinoni, I., Isa, L. & Wolf, H. Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Science Advances 2, e1501779 (2016).
-
Rouet, P.-E., Chomette, C., Duguet, E. & Ravaine, S. Colloidal Molecules from Valence-Endowed Nanoparticles by Covalent Chemistry. Angewandte Chemie International Edition 57, 15754–15757 (2018).
-
Hueckel, T., Hocky, G. M. & Sacanna, S. Total synthesis of colloidal matter. Nat Rev Mater 6, 1053–1069 (2021).
-
Verweij, R. W. et al. Conformations and diffusion of flexibly linked colloidal chains. J. Phys. Mater. 4, 035002 (2021).
-
Zanjani, M. B., Jenkins, I. C., Crocker, J. C. & Sinno, T. Colloidal Cluster Assembly into Ordered Superstructures via Engineered Directional Binding. ACS Nano 10, 11280–11289 (2016).
-
Kawaguchi, S. & Ito, K. Dispersion Polymerization. in Advances in Polymer Science vol. 175 299–328 (2005).
-
Lovell, P. A. & Schork, F. J. Fundamentals of Emulsion Polymerization. Biomacromolecules 21, 4396–4441 (2020).
-
Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 116, 10346–10413 (2016).
-
Gong, Z., Hueckel, T., Yi, G. R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017).
-
Cho, Y. S. et al. Particles with coordinated patches or windows from oil-in-water emulsions. Chemistry of Materials 19, 3183–3193 (2007).
-
Meester, V., Verweij, R. W., Van Der Wel, C. & Kraft, D. J. Colloidal Recycling: Reconfiguration of Random Aggregates into Patchy Particles. ACS Nano 10, 4322–4329 (2016).
-
Li, W. et al. Colloidal molecules and patchy particles: Complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 49, 1955–1976 (2020).
-
Ravaine, S. & Duguet, E. Synthesis and assembly of patchy particles: Recent progress and future prospects. Current Opinion in Colloid & Interface Science 30, 45–53 (2017).
-
Roh, K. H., Martin, D. C. & Lahann, J. Triphasic nanocolloids. Journal of the American Chemical Society 128, 6796–6797 (2006).
-
Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E. & Duguet, E. Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 15, 3745–3760 (2005).
-
Choueiri, R. M. et al. Surface patterning of nanoparticles with polymer patches. Nature 538, 79–83 (2016).
-
Gröschel, A. H. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).
-
Bao, H., Peukert, W. & Taylor, R. K. One-Pot Colloidal Synthesis of Plasmonic Patchy Particles. Advanced Materials 23, 2644–2649 (2011).
-
Xia, X., Hu, H., Ciamarra, M. P. & Ni, R. Linker-mediated self-assembly of mobile DNA-coated colloids. Science Advances 6, eaaz6921 (2020).
-
Zhao, K. & Mason, T. G. Assembly of colloidal particles in solution. Rep. Prog. Phys. 81, 126601 (2018).
-
Bharti, B. & Velev, O. D. Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions. Langmuir 31, 7897–7908 (2015).
-
Nguyen, V. D., Dang, M. T., Nguyen, T. A. & Schall, P. Critical Casimir forces for colloidal assembly. Journal of Physics: Condensed Matter 28, 043001 (2016).
-
Gambassi, A. et al. Critical Casimir effect in classical binary liquid mixtures. Phys. Rev. E 80, 061143 (2009).
-
G. Stuij, S., Labbé-Laurent, M., E. Kodger, T., Maciołek, A. & Schall, P. Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter 13, 5233–5249 (2017).
-
Pelissetto, A. & Vicari, E. Critical phenomena and renormalization-group theory. Physics Reports 368, 549–727 (2002).
-
Fisher, M. E. & Gennes, P. G. Wall phenomena in a critical binary mixture. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 287, 207–209 (1978).
-
Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of critical Casimir forces. Nature 451, (2008).
-
Mirzaev, S. Z., Behrends, R., Heimburg, T., Haller, J. & Kaatze, U. Critical behavior of 2,6-dimethylpyridine-water: Measurements of specific heat, dynamic light scattering, and shear viscosity. Journal of Chemical Physics 124, (2006).
-
Stein, A., Davidson, S. J., Allegra, J. C. & Allen, G. F. Tracer diffusion and shear viscosity for the system 2,6-lutidine-water near the lower critical point. The Journal of Chemical Physics 56, 6164–6168 (1972).
-
Gülari, E., Collings, A. F., Schmidt, R. L. & Pings, C. J. Light Scattering and Shear Viscosity Studies of the Binary System 2,6‐Lutidine‐Water in the Critical Region. The Journal of Chemical Physics 56, 6169–6179 (1972).
-
Warycha, S. & Rytting, J. H. Vapor pressure studies of pyridine, picolines and 2,6-lutidine in isooctane. J Solution Chem 13, 589–598 (1984).
-
Grattoni, C. A., Dawe, R. A., Seah, C. Y. & Gray, J. D. Lower critical solution coexistence curve and physical properties (density, viscosity, surface tension, and interfacial tension) of 2,6-lutidine + water. Journal of Chemical & Engineering Data 38, 516–519 (1993).
-
Jayalakshmi, Y., Van Duijneveldt, J. S. & Beysens, D. Behavior of density and refractive index in mixtures of 2,6-lutidine and water. The Journal of Chemical Physics 100, 604–609 (1994).
-
Clunie, J. C. & Baird, J. K. Interdiffusion coefficient and dynamic viscosity for the mixture 2,6-lutidine + water near the lower consolute point. Physics and Chemistry of Liquids 37, 357–371 (1999).
-
Wang, L.-C., Xu, H.-S., Zhao, J.-H., Song, C.-Y. & Wang, F.-A. Density and viscosity of (3-picoline+water) binary mixtures from T=(293.15 to 343.15) K. The Journal of Chemical Thermodynamics 37, 477–483 (2005).
-
Marczak, W. Speed of ultrasound, density, and adiabatic compressibility for 2-methylpyridine + heavy water in the temperature range 293 K to 313 K. Journal of Chemical and Engineering Data 44, 621–625 (1999).
-
Nguyen, T. A., Newton, A., Kraft, D., Bolhuis, P. & Schall, P. Tuning Patchy Bonds Induced by Critical Casimir Forces. Materials 10, 1265 (2017).
-
Ito, N., Fujiyama, T. & Udagawa, Y. A Study of Local Structure Formation in Binary Solutions of 2-Butoxyethanol and Water by Rayleigh Scatterring and Raman Spectra. BCSJ 56, 379–385 (1983).
-
Lapp, T., Rohloff, M., Vollmer, J. & Hof, B. Particle tracking for polydisperse sedimenting droplets in phase separation. Experiments in Fluids 52, 1187–1200 (2012).
-
Capasso Palmiero, U. et al. Use of RAFT macro-surfmers for the synthesis of transparent aqueous colloids with tunable interactions. Soft Matter 13, 6439–6449 (2017).
-
Buzzaccaro, S., Colombo, J., Parola, A. & Piazza, R. Critical depletion. Physical Review Letters 105, 1–4 (2010).
-
Martínez, I. A., Devailly, C., Petrosyan, A. & Ciliberto, S. Energy Transfer between Colloids via Critical Interactions. Entropy 19, 77 (2017).
-
Simon G. Stuij. Colloidal Design: Building, Bending and Breaking. (Universiteit van Amsterdam, 2020).
-
van Duijneveldt, J. S. & Beysens, D. Adsorption on colloids and flocculation: The influence of salt. J. Chem. Phys. 94, 5222–5225 (1991).
-
Nellen, U. et al. Salt-induced changes of colloidal interactions in critical mixtures. Soft Matter 7, 5360–5364 (2011).
-
Pousaneh, F., Ciach, A. & Maciołek, A. How ions in solution can change the sign of the critical Casimir potential. Soft Matter 10, 470–483 (2014).
-
Kunz, W. Specific Ion Effects. (World Scientific, 2010). doi:10.1142/7261.
-
Schwierz, N., Horinek, D., Sivan, U. & Netz, R. R. Reversed Hofmeister series—The rule rather than the exception. Current Opinion in Colloid & Interface Science 23, 10–18 (2016).
-
Kang, B., Tang, H., Zhao, Z. & Song, S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS Omega 5, 6229–6239 (2020).
-
Gregory, K. P., Wanless, E. J., Webber, G. B., Craig, V. S. J. & Page, A. J. The electrostatic origins of specific ion effects: Quantifying the Hofmeister series for anions. Chem. Sci. 12, 15007 (2021).
-
Glende, G., de Wijn, A. S. & Pousaneh, F. The Vanishing water/oil interface in the presence of antagonistic salt. J. Chem. Phys. 152, 124707 (2020).
-
Grate, J. W. et al. Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications. Water Resources Research 49, 4724–4729 (2013).
-
Steinbach, A. M., Sandner, T., Mizaikoff, B. & Strehle, S. Gas phase silanization for silicon nanowire sensors and other lab-on-a-chip systems. physica status solidi c 13, 135–141 (2016).
-
Munief, W.-M. et al. Silane Deposition via Gas-Phase Evaporation and High-Resolution Surface Characterization of the Ultrathin Siloxane Coatings. Langmuir 34, 10217 (2018).
-
Kennedy, C. L., Sayasilpi, D., Schall, P. & Meijer, J.-M. Self-assembly of colloidal cube superstructures with critical Casimir attractions. J. Phys.: Condens. Matter 34, 214005 (2022).
-
Crocker, J. C. & Grier, D. G. Methods of Digital Video Microscopy for Colloidal Studies. Journal of Colloid and Interface Science 179, 298–310 (1996).
-
van der Wel, C. & Kraft, D. J. Automated tracking of colloidal clusters with sub-pixel accuracy and precision. Journal of Physics: Condensed Matter 29, 044001 (2017).
-
Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-parti-le tracking. Methods 115, 80–90 (2017).
-
Bruijning, M., Visser, M. D., Hallmann, C. A. & Jongejans, E. Trackdem: Automated particle tracking to obtain population counts and size distributions from videos in r. Methods in Ecology and Evolution 9, 965–973 (2018).
-
Wollmann, T. et al. Detnet: Deep Neural Network For Particle Detection In Fluorescence Microscopy Images. in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 517–520 (2019). doi:10.1109/ISBI.2019.8759234.
-
Liu, J. et al. Deep learning-enhanced fluorescence microscopy via degeneration decoupling. Opt. Express, OE 28, 14859–14873 (2020).
-
Allan, D. B., Caswell, T., Keim, N. C., van der Wel, C. M. & Verweij, R. W. Soft-matter/trackpy: Trackpy v0.5.0. (Zenodo, 2021). doi:10.5281/zenodo.4682814.
-
Chau, P.-L. & Hardwick, A. J. A new order parameter for tetrahedral configurations. Molecular Physics 93, 511–518 (1998).
-
Maneewongvatana, S. & Mount, D. M. It’s okay to be skinny, if your friends are fat. in vol. 2 1–8 (1999).
-
Diao, Y. Y. & Liu, X. Y. Controlled Colloidal Assembly: Experimental Modeling of General Crystallization and Biomimicking of Structural Color. Advanced Functional Materials 22, 1354–1375 (2012).
-
Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 297, 237–240 (2002).
-
Liu, Y. et al. Lysozyme Protein Solution with an Intermediate Range Order Structure. J. Phys. Chem. B 115, 7238–7247 (2011).
-
Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011).
-
Soto, R. & Golestanian, R. Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91, 052304 (2015).
-
Elacqua, E., Zheng, X., Shillingford, C., Liu, M. & Weck, M. Molecular Recognition in the Colloidal World. Acc. Chem. Res. 50, 2756–2766 (2017).
-
Marino, E. et al. Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots. J. Phys. Chem. C 123, 13451–13457 (2019).
-
Nguyen, V. D., Faber, S., Hu, Z., Wegdam, G. H. & Schall, P. Controlling colloidal phase transitions with critical Casimir forces. Nature Communications 4, 1584 (2013).
-
Dang, M. T., Verde, A. V., Nguyen, V. D., Bolhuis, P. G. & Schall, P. Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. The Journal of Chemical Physics 139, 094903 (2013).
-
Veen, S. J. et al. Colloidal aggregation in microgravity by critical Casimir forces. Physical Review Letters 109, (2012).
-
Jonas, H. J., Stuij, S. G., Schall, P. & Bolhuis, P. G. A temperature-dependent critical Casimir patchy particle model benchmarked onto experiment. J. Chem. Phys. 155, 034902 (2021).
-
Sciortino, F., Bianchi, E., Douglas, J. F. & Tartaglia, P. Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. Journal of Chemical Physics 126, (2007).
-
Hendrickson, J. B. Molecular Geometry. I. Ma5chine Computation of the Common Rings. J. Am. Chem. Soc. 83, 4537–4547 (1961).
-
Supplementary Movie 1 of "Revealing pseudorotation and ring-opening reactions in colloidal organic molecules".
-
Kilpatrick, J. E., Pitzer, K. S. & Spitzer, R. The Thermodynamics and Molecular Structure of Cyclopentane. J. Am. Chem. Soc. 69, 2483–2488 (1947).
-
Poupko, R., Luz, Z. & Zimmermann, H. Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents. J. Am. Chem. Soc. 104, 5307–5314 (1982).
-
Ocola, E. J., Bauman, L. E. & Laane, J. Vibrational Spectra and Structure of Cyclopentane and its Isotopomers. J. Phys. Chem. A 115, 6531–6542 (2011).
-
Kowalewski, P., Frey, H.-M., Infanger, D. & Leutwyler, S. Probing the Structure, Pseudorotation, and Radial Vibrations of Cyclopentane by Femtosecond Rotational Raman Coherence Spectroscopy. J Phys Chem A 119, 11215–11225 (2015).
-
Supplementary Movie 2 of "Revealing pseudorotation and ring-opening reactions in colloidal organic molecules".
-
Cremer, D. & Pople, J. A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 97, 1354–1358 (1975).
-
Supplementary Movie 3 of "Revealing pseudorotation and ring-opening reactions in colloidal organic molecules".
-
Supplementary Movie 4 of "Revealing pseudorotation and ring-opening reactions in colloidal organic molecules".
-
*Supplementary Movie 5 of "Revealing pseudorotation and ring-opening reactions in colloidal organic molecules".
-
Flaherty, D. W., Uzun, A. & Iglesia, E. Catalytic Ring Opening of Cycloalkanes on Ir Clusters: Alkyl Substitution Effects on the Structure and Stability of C–C Bond Cleavage Transition States. J. Phys. Chem. C 119, 2597–2613 (2015).
-
Du, H., Fairbridge, C., Yang, H. & Ring, Z. The chemistry of selective ring-opening catalysts. Applied Catalysis A: General 294, 1–21 (2005).
-
Zhao, Z.-J., Moskaleva, L. V. & Rösch, N. Ring-Opening Reactions of Methylcyclopentane over Metal Catalysts, M = Pt, Rh, Ir, and Pd: A Mechanistic Study from First-Principles Calculations. ACS Catal. 3, 196–205 (2013).
-
Moskaleva, L., Chiu, C., Genest, A. & Rösch, N. Transformations of Organic Molecules over Metal Surfaces: Insights from Computational Catalysis. The Chemical Record 16, 2388–2404 (2016).
-
Haddoum, S. et al. Fe-TUD-1 for the preferential rupture of the substituted CC bond of methylcyclopentane (MCP). Catalysis Communications 27, 141–147 (2012).
-
Newton, A. C., Kools, R., Swenson, D. W. H. & Bolhuis, P. G. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids. Journal of Chemical Physics 147, (2017).
-
Mohry, T. F., MacIoek, A. & Dietrich, S. Phase behavior of colloidal suspensions with critical solvents in terms of effective interactions. Journal of Chemical Physics 136, (2012).
-
Guo, R., Mao, J., Xie, X. M. & Yan, L. T. Predictive supracolloidal helices from patchy particles. Scientific Reports 4, 1–7 (2014).
-
Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mechanics Letters 13, 42–77 (2017).
-
Li, Q., Lu, J., Gupta, P. & Qiu, M. Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Advanced Optical Materials 7, 1900595 (2019).
-
Kang, S. et al. 2D semiconducting materials for electronic and optoelectronic applications: Potential and challenge. 2D Mater. 7, 022003 (2020).
-
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural Defects in Graphene. ACS Nano 5, 26–41 (2011).
-
Liu, L., Qing, M., Wang, Y. & Chen, S. Defects in Graphene: Generation, Healing, and Their Effects on the Properties of Graphene: A Review. Journal of Materials Science & Technology 31, 599–606 (2015).
-
Yang, G., Li, L., Lee, W. B. & Ng, M. C. Structure of graphene and its disorders: A review. Science and Technology of Advanced Materials 19, 613–648 (2018).
-
Herlach, D. M., Klassen, I., Wette, P. & Holland-Moritz, D. Colloids as model systems for metals and alloys: A case study of crystallization. J. Phys.: Condens. Matter 22, 153101 (2010).
-
Gabrys, P. A., Zornberg, L. Z. & Macfarlane, R. J. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. Small 15, 1805424 (2019).
-
Wang, Y. et al. Crystallization of DNA-coated colloids. Nature Communications 6, 7253 (2015).
-
Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualization of Dislocation Dynamics in Colloidal Crystals. Science 305, 1944 (2004).
-
Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).
-
Kim, S. H. et al. Synthesis and assembly of colloidal particles with sticky dimples. Journal of the American Chemical Society 134, 16115–16118 (2012).
-
Kraft, D. J. et al. Self-Assembly of Colloids with Liquid Protrusions. Journal of the American Chemical Society 131, 1182–1186 (2009).
-
Swinkels, P. J. M. et al. Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nature Communications 12, 2810 (2021).
-
Nang, L. V. & Kim, E.-T. Controllable Synthesis of High-Quality Graphene Using Inductively-Coupled Plasma Chemical Vapor Deposition. J. Electrochem. Soc. 159, K93 (2012).
-
Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 92, 205402 (2015).
-
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
-
Araujo, P. T., Terrones, M. & Dresselhaus, M. S. Defects and impurities in graphene-like materials. Materials Today 15, 98 (2012).
-
Primo, A. et al. Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: Mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry 20, 2611 (2018).
-
Wang, D. et al. Scalable and controlled creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties. Carbon 161, 880–891 (2020).
-
Su, S., Wang, X. & Xue, J. Nanopores in two-dimensional materials: Accurate fabrication. Mater. Horiz. 8, 1390–1408 (2021).
-
Niu, T., Zhou, M., Zhang, J., Feng, Y. & Chen, W. Growth Intermediates for CVD Graphene on Cu(111): Carbon Clusters and Defective Graphene. J. Am. Chem. Soc. 135, 8409 (2013).
-
Chen, Q. et al. Atomic Level Distributed Strain within Graphene Divacancies from BondRotations. ACS Nano 9, 8599 (2015).
-
Kim, Y., Ihm, J., Yoon, E. & Lee, G.-D. Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 84, 075445 (2011).
-
Robertson, A. W. et al. Stability and Dynamics of the Tetravacancy in Graphene. Nano Lett. 14, 1634–1642 (2014).
-
Yuan, Q. et al. Magic Carbon Clusters in the Chemical Vapor Deposition Growth ofGraphene. J. Am. Chem. Soc. 134, 2970 (2012).
-
Wang, H. et al. Morphology Effects of Graphene Seeds on the Quality of Graphene Nucleation: Quantum Chemical Molecular Dynamics Simulations. J. Phys. Chem. C 125, 5056–5065 (2021).
-
Misaligned flakes of colloidal graphene merging.
-
Gibb, A. L. et al. Atomic Resolution Imaging of Grain Boundary Defects in Monolayer Chemical Vapor Deposition-Grown Hexagonal Boron Nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013).
-
Evolution of a colloidal graphene polycrystal.
-
Girit, Ç. Ö. et al. Graphene at the Edge: Stability and Dynamics. Science 323, 1705–1708 (2009).
-
Zhang, J. et al. Controlled Growth of Single-Crystal Graphene Films. Advanced Materials 32, 1903266 (2020).
-
Zeng, M. et al. Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure. J. Am. Chem. Soc. 138, 7812–7815 (2016).
-
Robertson, A. W. et al. Structural Reconstruction of the Graphene Monovacancy. ACS Nano 7, 4495–4502 (2013).
-
Wadey, J. D. et al. Mechanisms of monovacancy diffusion in graphene. Chemical Physics Letters 648, 161–165 (2016).
-
Kotakoski, J., Mangler, C. & Meyer, J. C. Imaging atomic-level random walk of a point defect in graphene. Nature Communications 5, 3991 (2014).
-
Li, L., Reich, S. & Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 72, 184109 (2005).
-
Zaminpayma, E., Razavi, M. E. & Nayebi, P. Electronic properties of graphene with single vacancy and Stone-Wales defects. Applied Surface Science 414, 101–106 (2017).
-
El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003).
-
Lee, G.-D. et al. Diffusion, Coalescence, and Reconstruction of Vacancy Defects in Graphene Layers. Phys. Rev. Lett. 95, 205501 (2005).
-
Luo, Z. & Liu, B. Shape-Tunable Colloids from Structured Liquid Droplet Templates. Angewandte Chemie 130, 5034–5039 (2018).
-
Chen, C., Xie, L. & Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 12, 1267–1278 (2019).
-
Rocklin, D. Z. & Mao, X. Self-assembly of three-dimensional open structures using patchy colloidal particles. Soft Matter 10, 7569 (2014).
-
Duguet, E., Ducrot, E. & Ravaine, S. Colloidal Molecules and Colloidal Polymers. in Functional Materials from Colloidal Self-Assembly 1–36 (John Wiley & Sons, Ltd, 2022). doi:10.1002/9783527828722.ch1.
-
Huh, J.-H. et al. Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. Advanced Materials 32, 2001806 (2020).
-
Nguyen, T. A. et al. Switching colloidal superstructures by critical casimir forces. Advanced Materials 29, 1–6 (2017).
-
Eslami, H., Khanjari, N. & Müller-Plathe, F. Self-Assembly Mechanisms of Triblock Janus Particles. Journal of Chemical Theory and Computation (2019) doi:10.1021/acs.jctc.8b00713.
-
Doye, J. P. K. et al. Controlling crystallization and its absence: Proteins, colloids and patchy models. Phys. Chem. Chem. Phys. 9, 2197–2205 (2007).
-
Noya, E. G., Vega, C., Doye, J. P. K. & Louis, A. A. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry. J. Chem. Phys. 132, 234511 (2010).
-
Zhang, Q. et al. Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. Progress in Materials Science 74, 332–400 (2015).
-
Gasser, U. Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.: Condens. Matter 21, 203101 (2009).
-
Büchner, C. et al. Topological Investigation of Two-Dimensional Amorphous Materials. Zeitschrift für Physikalische Chemie 228, 587–607 (2014).
-
Chen, B. & Siepmann, J. I. Optimized monte carlo data analysis. J. Phys. Chem. B 105, 11275 (2001).
-
Büchner, C. et al. Building block analysis of 2D amorphous networks reveals medium range correlation. Journal of Non-Crystalline Solids 435, 40–47 (2016).
-
Huygens, C. Treatise on light In which are explained the causes of that which occurs in reflexion, & in refraction and particularly In the strange Refraction of Iceland crystal. (MacMillan and Co., Limited, 1912).
-
Carretti, E. et al. New Frontiers in Materials Science for Art Conservation: Responsive Gels and Beyond. Acc. Chem. Res. 43, 751–760 (2010).
-
Jean, L., Foley, A. C. & Vaux, D. J. T. The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules 7, 70 (2017).
-
Cai, J., Townsend, J. P., Dodson, T. C., Heiney, P. A. & Sweeney, A. M. Eye patches: Protein assembly of index-gradient squid lenses. Science 357, 564–569 (2017).
-
Flory, P. J. Principles of Polymer Chemistry. (Cornell University Press, 1953).
-
Stauffer, D. & Aharony, A. Introduction to percolation theory. (Taylor & Francis, 2003). doi:10.1201/9781315274386.
-
Lu, P. J. et al. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).
-
Zaccone, A., Wu, H. & Del Gado, E. Elasticity of Arrested Short-Ranged Attractive Colloids: Homogeneous and Heterogeneous Glasses. Phys. Rev. Lett. 103, 208301 (2009).
-
Rouwhorst, J., Ness, C., Stoyanov, S., Zaccone, A. & Schall, P. Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nat Commun 11, 3558 (2020).
-
Gordon, M. B., Kloxin, C. J. & Wagner, N. J. The rheology and microstructure of an aging thermoreversible colloidal gel. Journal of Rheology 61, 23–34 (2017).
-
Russo, J., Tartaglia, P. & Sciortino, F. Association of limited valence patchy particles in two dimensions. Soft Matter 6, 4229 (2010).
-
Heras, D. de las, Maria Tavares, J. & Gama, M. M. T. da. Phase diagrams of binary mixtures of patchy colloids with distinct numbers of patches: The network fluid regime. Soft Matter 7, 5615–5626 (2011).
-
Fantoni, R. & Pastore, G. Wertheim perturbation theory: Thermodynamics and structure of patchy colloids. Molecular Physics 113, 2593–2607 (2015).
-
Teixeira, P. I. C. & Tavares, J. M. Phase behaviour of pure and mixed patchy colloids — Theory and simulation. Current Opinion in Colloid & Interface Science 30, 16–24 (2017).
-
Braz Teixeira, R., de las Heras, D., Tavares, J. M. & Telo da Gama, M. M. Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity. J. Chem. Phys. 155, 044903 (2021).
-
A. Dudukovic, N. & F. Zukoski, C. Evidence for equilibrium gels of valence-limited particles. Soft Matter 10, 7849–7856 (2014).
-
Pujala, R. K. & Bohidar, H. B. Slow dynamics and equilibrium gelation in fractionated montmorillonite nanoplatelet dispersions. Colloid Polym Sci 297, 1053–1065 (2019).
-
Biffi, S. et al. Phase behavior and critical activated dynamics of limited-valence DNA nanostars. PNAS 110, 15633–15637 (2013).
-
Biffi, S. et al. Equilibrium gels of low-valence DNA nanostars: A colloidal model for strong glass formers. Soft Matter 11, 3132 (2015).
-
T. Nguyen, D. & A. Saleh, O. Tuning phase and aging of DNA hydrogels through molecular design. Soft Matter 13, 5421–5427 (2017).
-
Lattuada, E., Caprara, D., Piazza, R. & Sciortino, F. Spatially uniform dynamics in equilibrium colloidal gels. Science Advances (2021) doi:10.1126/sciadv.abk2360.
-
Network formation of patchy particles.
-
Muthukumar, M. & Winter, H. H. Fractal dimension of a crosslinking polymer at the gel point. Macromolecules 19, 1284–1285 (1986).
-
Wertheim, M. S. Fluids with highly directional attractive forces. IV. Equilibrium polymerization. Journal of Statistical Physics 42, 477–492 (1986).
-
Bianchi, E., Tartaglia, P., La Nave, E. & Sciortino, F. Fully Solvable Equilibrium Self-Assembly Process: Fine-Tuning the Clusters Size and the Connectivity in Patchy Particle Systems. J. Phys. Chem. B 111, 11765–11769 (2007).
-
Jonas, H. J. & Bolhuis, P. G. Explaining the anomalous chain length distributions of divalent patchy particles in a highly confined space using quasi-2D Wertheim theory.
-
Rubinstein, M. & Colby, R. H. Polymer physics. (Oxford University Press, 2003).
-
Chapman, W. G., Jackson, G. & Gubbins, K. E. Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Molecular Physics 65, 1057–1079 (1988).
-
Sciortino, F. Basic concepts in self-assembly. Proceedings of the International School of Physics "Enrico Fermi" 193, 1–17 (2016).
-
Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat Commun 10, 1–12 (2019).
-
Hees, I. A. van et al. Self-assembly of oppositely charged polyelectrolyte block copolymers containing short thermoresponsive blocks. Polym. Chem. (2019) doi:10.1039/C9PY00250B.
Last updated: